Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Immunol ; 151: 231-241, 2022 11.
Article in English | MEDLINE | ID: covidwho-2049678

ABSTRACT

The antibody repertoire (Rep-seq) sequencing revolutionized the diversity of antigen B cell receptor studies, allowing deep and quantitative analysis to decipher the role of adaptive immunity in health and disease. Particularly, horse (Equus caballus) polyclonal antibodies have been produced and used since the century XIX to treat and prophylaxis diphtheria, tuberculosis, tetanus, pneumonia, and, more recently, COVID-19. However, our knowledge about the horse B cell receptors repertories is minimal. We present a deep horse antibody heavy chain repertoire (IGH) characterization of non-infected horses using NGS (Next generation sequencing). This study obtained a mean of 248,169 unique IgM clones and 66,141 unique IgG clones from four domestic adult horses. Rarefaction analysis showed sequence coverage was between 52 % and 82 % in IgM and IgG isotypes. We observed that besides horses antibody can use all functional IGHV genes, around 80 % of their antibodies use only three IGHV gene segments, and around 55 % use only one IGHJ gene segment. This limited VJ diversity seems to be compensated by the junctional diversity of these antibodies. We observed that the junctional diversity in horse antibodies is widespread, present in more than 90 % of horse antibodies. Besides this, the length of this region seems to be higher in horse antibodies than in other species. N1 and N2 nucleotides addition range from 0 to 111 nucleotides. In addition, around 45 % of the antibody clones have more than ten nucleotides in both the N1 and N2 junction regions. This diversity mechanism may be one of the most important in providing variability to the equine antibody repertoire. This study provides new insights regarding horse antibody composition, diversity generation, and particularities compared to other species, such as the frequency and length of N nucleotide addition. This study also points out the urgent need to better characterize TdT in horses and other species to better understand antibody repertoire characteristics.


Subject(s)
COVID-19 , Animals , Antibody Diversity , Horses , Immunoglobulin G/genetics , Immunoglobulin M/genetics , Nucleotides , Receptors, Antigen, B-Cell/genetics
2.
Front Immunol ; 13: 809264, 2022.
Article in English | MEDLINE | ID: covidwho-1979036

ABSTRACT

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.


Subject(s)
Malaria , Merozoite Surface Protein 1 , Adult , Animals , Antibodies, Protozoan , Antibody Formation , Child , Humans , Immunoglobulin G , Immunoglobulin M/metabolism , Memory B Cells , Merozoites , Plasmodium falciparum , Receptors, Antigen, B-Cell/metabolism , Uganda
3.
J Proteome Res ; 21(7): 1616-1627, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1873398

ABSTRACT

In this study, we used multiple enzyme digestions, coupled with higher-energy collisional dissociation (HCD) and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to develop a mass-spectrometric (MS) method for determining the complete protein sequence of monoclonal antibodies (mAbs). The method was refined on an mAb of a known sequence, a SARS-CoV-1 antireceptor binding domain (RBD) spike monoclonal antibody. The data were searched using Supernovo to generate a complete template-assisted de novo sequence for this and two SARS-CoV-2 mAbs of known sequences resulting in correct sequences for the variable regions and correct distinction of Ile and Leu residues. We then used the method on a set of 25 antihemagglutinin (HA) influenza antibodies of unknown sequences and determined high confidence sequences for >99% of the complementarity determining regions (CDRs). The heavy-chain and light-chain genes were cloned and transfected into cells for recombinant expression followed by affinity purification. The recombinant mAbs displayed binding curves matching the original mAbs with specificity to the HA influenza antigen. Our findings indicate that this methodology results in almost complete antibody sequence coverage with high confidence results for CDR regions on diverse mAb sequences.


Subject(s)
COVID-19 , Influenza, Human , Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , COVID-19/diagnosis , Humans , Mass Spectrometry , SARS-CoV-2/genetics
5.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1556620

ABSTRACT

Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age. The antibody response to non-HA antigens was boosted by vaccination. Recombinant expression of 19 vaccine-H1+H3 CR serum monoclonal antibodies (s-mAbs) revealed that they predominantly bound to non-HA influenza proteins. A sizable fraction of vaccine-H1+H3 CR s-mAbs recognized with high affinity the sulfated glycans, in particular sulfated type 2 N-acetyllactosamine (Galß1-4GalNAcß), which is found on egg-produced proteins and thus unlikely to contribute to protection against influenza infection in humans. Antibodies against sulfated glycans in egg-produced vaccine had been identified in animals but were not previously characterized in humans. Collectively, our results provide a quantitative basis for how repeated exposure to split influenza vaccine correlates with unintended focusing of serum antibody responses to non-HA antigens that may result in suboptimal immunity against influenza.


Subject(s)
Antibodies, Viral/biosynthesis , Influenza Vaccines/immunology , Influenza, Human/immunology , Viral Proteins/immunology , Adult , Age Factors , Aged , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/blood , Cohort Studies , Cross Reactions , Eggs/analysis , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Middle Aged , Polysaccharides/immunology , Vaccination
6.
Nat Protoc ; 16(11): 5339-5356, 2021 11.
Article in English | MEDLINE | ID: covidwho-1454802

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 spike protein is a critical component of coronavirus disease 2019 vaccines and diagnostics and is also a therapeutic target. However, the spike protein is difficult to produce recombinantly because it is a large trimeric class I fusion membrane protein that is metastable and heavily glycosylated. We recently developed a prefusion-stabilized spike variant, termed HexaPro for six stabilizing proline substitutions, that can be expressed with a yield of >30 mg/L in ExpiCHO cells. This protocol describes an optimized workflow for expressing and biophysically characterizing rationally engineered spike proteins in Freestyle 293 and ExpiCHO cell lines. Although we focus on HexaPro, this protocol has been used to purify over a hundred different spike variants in our laboratories. We also provide guidance on expression quality control, long-term storage, and uses in enzyme-linked immunosorbent assays. The entire protocol, from transfection to biophysical characterization, can be completed in 7 d by researchers with basic tissue cell culture and protein purification expertise.


Subject(s)
Gene Expression Regulation, Viral/physiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Models, Molecular , Protein Conformation
7.
Science ; 372(6546): 1108-1112, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1388437

ABSTRACT

The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibody Affinity , COVID-19/prevention & control , Epitopes/immunology , Humans , Immune Evasion , Immunoglobulin G/blood , Immunoglobulin G/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Variable Region/immunology , Mice , Mice, Inbred BALB C , Mutation , Protein Domains , Proteomics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
8.
Am J Pathol ; 190(8): 1680-1690, 2020 08.
Article in English | MEDLINE | ID: covidwho-677458

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has spread globally, and no proven treatments are available. Convalescent plasma therapy has been used with varying degrees of success to treat severe microbial infections for >100 years. Patients (n = 25) with severe and/or life-threatening COVID-19 disease were enrolled at the Houston Methodist hospitals from March 28, 2020, to April 14, 2020. Patients were transfused with convalescent plasma, obtained from donors with confirmed severe acute respiratory syndrome coronavirus 2 infection who had recovered. The primary study outcome was safety, and the secondary outcome was clinical status at day 14 after transfusion. Clinical improvement was assessed on the basis of a modified World Health Organization six-point ordinal scale and laboratory parameters. Viral genome sequencing was performed on donor and recipient strains. At day 7 after transfusion with convalescent plasma, nine patients had at least a one-point improvement in clinical scale, and seven of those were discharged. By day 14 after transfusion, 19 (76%) patients had at least a one-point improvement in clinical status, and 11 were discharged. No adverse events as a result of plasma transfusion were observed. Whole genome sequencing data did not identify a strain genotype-disease severity correlation. The data indicate that administration of convalescent plasma is a safe treatment option for those with severe COVID-19 disease.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adult , Aged , Betacoronavirus/genetics , COVID-19 , Female , Humans , Immunization, Passive , Investigational New Drug Application , Male , Middle Aged , Pandemics , SARS-CoV-2 , Texas , Whole Genome Sequencing , Young Adult , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL